Seeding the initial population of multi-objective evolutionary algorithms: A computational study
نویسندگان
چکیده
منابع مشابه
Seeding the initial population of multi-objective evolutionary algorithms: A computational study
Most experimental studies initialize the population of evolutionary algorithms with random genotypes. In practice, however, optimizers are typically seeded with good candidate solutions either previously known or created according to some problem-specific method. This seeding has been studied extensively for single-objective problems. For multi-objective problems, however, very little literatur...
متن کاملEvolutionary Multi-Objective Algorithms
The versatility that genetic algorithm (GA) has proved to have for solving different problems, has make it the first choice of researchers to deal with new challenges. Currently, GAs are the most well known evolutionary algorithms, because their intuitive principle of operation and their relatively simple implementation; besides they have the ability to reflect the philosophy of evolutionary co...
متن کاملMulti-Objective Evolutionary Algorithms
Real world optimization problems are often too complex to be solved through analytical means. Evolutionary algorithms, a class of algorithms that borrow paradigms from nature, are particularly well suited to address such problems. These algorithms are stochastic methods of optimization that have become immensely popular recently, because they are derivative-free methods, are not as prone to get...
متن کاملA Study of Distributed Evolutionary Algorithms for Multi-objective Optimisation
Most popular Evolutionary Algorithms for single multi-objective optimisation are motivated by the reduction of the computation time and the resolution larger problems. A promising alternative is to create new distributed schemes that improve the behaviour of the search process of such algorithms. In the multi-objective optimisation problems, more exploration of the search space is required to o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Soft Computing
سال: 2015
ISSN: 1568-4946
DOI: 10.1016/j.asoc.2015.04.043